Standard gravitational parameter

Body μ (km3s−2)
Sun 132,712,440,018(8)[1]
Mercury 22,032
Venus 324,859
Earth 398,600.4418(9)
Moon 4,902.7779
Mars 42,828
Ceres 63.1(3)[2][3]
Jupiter 126,686,534
Saturn 37,931,187
Uranus 5,793,939(13)[4]
Neptune 6,836,529
Pluto 871(5)[5]
Eris 1,108(13)[6]

In astrodynamics, the standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of the body.

\mu=GM \

The SI units of the standard gravitational parameter are m3s−2.

Contents

Small body orbiting a central body

Under standard assumptions in astrodynamics we have:

m \ll M \

where m is the mass of the orbiting body, M is the mass of the central body, and G is the standard gravitational parameter of the larger body.

For all circular orbits around a given central body:

\mu = rv^2 = r^3\omega^2 = 4\pi^2r^3/T^2 \

where r is the orbit radius, v is the orbital speed, ω is the angular speed, and T is the orbital period.

The last equality has a very simple generalization to elliptic orbits:

\mu=4\pi^2a^3/T^2 \

where a is the semi-major axis. See Kepler's third law.

For all parabolic trajectories rv2 is constant and equal to 2μ. For elliptic and hyperbolic orbits μ = 2a|ε|, where ε is the specific orbital energy.

Two bodies orbiting each other

In the more general case where the bodies need not be a large one and a small one (the two-body problem), we define:

Then:

Terminology and accuracy

Note that the reduced mass is also denoted by \mu.\!\,.

The value for the Earth is called the geocentric gravitational constant and equals 398,600.4418±0.0008 km3s−2. Thus the uncertainty is 1 to 500,000,000, much smaller than the uncertainties in G and M separately (1 to 7,000 each).

The value for the Sun is called the heliocentric gravitational constant and equals 1.32712440018×1020 m3s−2.

References

  1. ^ "Astrodynamic Constants". NASA/JPL. 27 February 2009. http://ssd.jpl.nasa.gov/?constants. Retrieved 27 July 2009. 
  2. ^ E.V. Pitjeva (2005). "High-Precision Ephemerides of Planets — EPM and Determination of Some Astronomical Constants". Solar System Research 39 (3): 176. Bibcode 2005SoSyR..39..176P. doi:10.1007/s11208-005-0033-2. http://iau-comm4.jpl.nasa.gov/EPM2004.pdf. 
  3. ^ D. T. Britt, D. Yeomans, K. Housen, G. Consolmagno (2002). "Asteroid density, porosity, and structure". In W. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel. Asteroids III. University of Arizona Press. p. 488. http://www.lpi.usra.edu/books/AsteroidsIII/pdf/3022.pdf. 
  4. ^ R.A. Jacobson, J.K. Campbell, A.H. Taylor, S.P. Synnott (1992). "The masses of Uranus and its major satellites from Voyager tracking data and Earth-based Uranian satellite data". Astronomical Journal 103 (6): 2068–2078. Bibcode 1992AJ....103.2068J. doi:10.1086/116211. 
  5. ^ M.W. Buie, W.M. Grundy, E.F. Young, L.A. Young, S.A. Stern (2006). "Orbits and photometry of Pluto's satellites: Charon, S/2005 P1, and S/2005 P2". Astronomical Journal 132: 290. arXiv:astro-ph/0512491. Bibcode 2006AJ....132..290B. doi:10.1086/504422. 
  6. ^ M.E. Brown, E.L. Schaller (2007). "The Mass of Dwarf Planet Eris". Science 316 (5831): 1585. Bibcode 2007Sci...316.1585B. doi:10.1126/science.1139415. PMID 17569855. http://www.sciencemag.org/cgi/content/full/316/5831/1585. 

See also